
Page 1 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

Inverted Ant Colony Optimization for Die/Package/PCB Co-design
Daniel Boyne

Austin Community College
danboyne@gmail.com

Abstract

Routing software is often optimized for only one of the three physical

domains of electronic systems: the silicon die, the printed circuit board

(PCB), or the intervening package. System-level architects must ensure

that physical connectivity can be achieved among these domains, in

addition to satisfying system-level electrical performance

requirements. Simply achieving connectivity can require weeks or

months of engineering effort, with experts in each domain iteratively

adjusting their physical designs using specialized software tools.

To address system-level connectivity, the present work describes an

open-source, exploratory tool to provide initial guidance to system,

package, or PCB designers. The tool is not expected to provide an

optimal solution within any given domain; its utility instead is its ability

to span multiple domains without dependencies on other software tools

– proprietary or otherwise.

Given the person-weeks of effort often required for traditional

die/package/PCB co-design, this utility prioritizes capability over

speed. The proof-of-concept version achieved full connectivity within

four days for an industry-like routing configuration that include a PCB,

a ball-grid-array (BGA) package with a C4-bumped die, and coarse

routing on the silicon die. The rip-up-and-reroute algorithm employs A*

pathfinding in a three-dimensional, grid-based array; negotiated

congestion that dissipates over time, similar to inverted ant colony

optimization; and concepts borrowed from simulated annealing to

avoid local minima in the routing cost.

Keywords

Physical design, co-design, inverted ant-colony optimization, A*

algorithm, negotiated congestion.

1 INTRODUCTION
Simultaneously designing a silicon chip, printed circuit board (PCB), and

intervening package is necessary for launching new electronic systems

that are optimized for performance or cost. The technical and

organization challenges of this co-design process are well documented,

e.g. [1,2], including newer challenges associated with the increasing use

of packages containing multiple, heterogeneous silicon [3]. Electronic

design automation (EDA) vendors offer a growing array of tools aimed

at these challenges. Some tools are vendor-agnostic, although many are

understandably optimized to integrate with software tools from a single

vendor. Inter-company co-design, which can be complicated by

organizational barriers, may also suffer from a lack of EDA

interoperability. These challenges serve as the motivation for an open-

source utility‡ intended to enable co-design from on-silicon I/O buffers

to components on the PCB.

1.1 Problem Scope
With the challenges described above, a non-proprietary utility would be

useful for system-level designers to work with chip-, package-, and PCB-

designers for assessing the routability of various design configurations

across these three domains. For any one domain, a fully optimized and

manufacturable design is beyond this work’s scope; EDA vendors

provide solutions for domain-specific optimization, from length-

matching to design-for-manufacturability. As depicted in Figure 1, the

scope of the current work is the routing of:

• Top-level silicon traces, such as a coarse redistribution

layer (RDL), with C4/pillar connections to a flip-chip

package,

• Flip-chip packages with a ball-grid array (BGA)

interface to a PCB,

• PCB routing.

The scope of the current work is limited to planar routing on a die,

package, and PCB. Connections between routing layers are limited to

vertical connections such as laser vias, solder balls, copper pillars, or

C4s. It is understood that linewidths and spacings vary dramatically

between the die, package, and PCB. Likewise, such dimensions can vary

within different regions of the package and from net to net.

Finally, the current work is limited to routing two-terminal nets,

including differential pair (DP) nets. Such nets frequently offer bigger

co-design challenges than multi-terminal power and ground nets.

In the interest of brevity, the routing utility is referred to as Acorn; a

name based on its inspiration from Ant-Colony Optimization for Routing

Nets. Inspired by biological, stigmergic systems like insect colonies and

hives [4], Acorn employs the A* algorithm so that nets are repelled by

congestion (pheromones) deposited by other nets (organisms).

1.2 Previous Work
Two overlapping areas of previous research are described in this

section related to the chip, package, and PCB domains: (1) general net-

routing solutions, and (2) those focused on co-design.

McMurchie et al. [5] developed a negotiated congestion (NC) router

that iteratively ripped up and rerouted nets while monotonically

increasing the congestion cost along occupied routing paths. Tessier

augmented NC with depth-first A* pathfinding [6]. Chan et al [7, 8]

accelerated the compute-time of the NC router using separate CPUs to

route each net in parallel, in addition to other speed-up features. Lin et

al. [9] utilized NC and A* pathfinding in a system with flexible physical

constraints, including irregular arrangements of terminals.

Beyond the microelectronics literature, Dias et al. [10] combined

inverted ant-colony optimization (IACO) with the breadth-first Dijkstra

algorithm for optimizing roadway traffic. Nguyen et al. [11] used a

similar approach called the ‘inverted pheromone model’, introducing

randomization to avoid oscillatory traffic behavior.

In the co-design literature, Fang et al. [12,13] addressed chip,

package, and PCB co-design using integer linear programming (ILP)

techniques, including the routing of DP nets and on-die routing. This

work was later extended to allow the router to select different solder

bumps, or waypoints, between the die and package to optimize the

routing [14]. Further efforts addressed multiple layers of on-die routing,

or redistribution layers (RDLs) [15].

Figure 1: Scope of the current work: PCB, package, and limited die routing.

‡ Source code available at https://github.com/danboyne/ACORN

Page 2 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

1.3 New Contributions of Current Work
Like the NC-based router in Lin et al. [9], this work allows for flexible

definitions of the layout constraints. Acorn differs from previous NC-

based routers by allowing for the cost of congested routing resources to

reduce over time as nets negotiate alternative routes, as is common in

IACO-based methods used in optimizing roadway traffic. Acorn

augments previous grid-based routers by allowing for up to 16 routing

directions: 0°, 26°, 45°, 63°, 90°, …. Further, subsets of these directions

can be applied to different regions, e.g., to allow only Manhattan routing.

Unlike [9], the connections in Acorn between the traces of differential

pair nets and their terminals are flexible enough to minimize trace

lengths at each terminal, regardless of whether the pair is P/N-

swappable. The same applies to the connections between differential

pair traces and each inter-level via.

This work introduces 2- and 3-dimensional routing zones with near-

zero routing cost and zero congestion cost, and in which design-rule

violations are allowed. By placing terminals within such zones, the

associated nets become ‘swappable’ among each other. In the extreme

case, all nets can have one of their two terminals placed in such a zone

to use the router for unordered, multilayer escape-routing.

To the author’s knowledge, this is the first rip-up-and-reroute

algorithm that can make large, stepwise changes to routing costs and

subsequently assess those changes’ effects on routing quality, thereby

predicting whether additional changes would further improve the

routing.

2 Problem Formulation
Acorn reads all input information from a text file, including the netlist, a

physical description of the available routing regions, design rules, and a

small number of control parameters. As in [16], another input is the

maximum number of iterations to execute before giving up. This

acknowledges that convergence to a solution free of design-rule

violations is not guaranteed by negotiated congestion (NC) or inverted

ant-colony optimization (IACO) algorithms.

2.1 Routing Boundaries and Costs
The input text file defines the number of routing layers and intervening

via layers, including the allowed areas for routing on each of these

layers. Routing barriers of arbitrary shape are accommodated, resulting

in systems like that shown in Figure 2(b). In this example are 5 routing

layers and 4 via layers, including the regions on each layer where lateral

and vertical routes are allowed.

The input file may include increased costs for routing in any region of

any layer, thereby prompting Acorn to avoid routing in such regions.

2.2 Routing Design Rules
Acorn checks for minimum spacing between different nets, which

consist of traces and interlevel vias. Trace widths and via diameters are

specified in the input file and guaranteed by design. For design-rule

checking, vias are subdivided into two types: upward-going and

downward-going vias, each of which may have different diameters and

minimum spacing. Figure 3 depicts the three shape-types (Trace, Via Up,

and Via Down) and the 9 design-rules required in the input file,

including the minimum allowed spacings between each of the three

shape-types.

In addition to widths and spacings, the input file may specify the

allowed routing directions. In this way, the allowed angles of routing

may be constrained: all-angle routing, subject to the constraints listed in

Section 3.2); Manhattan routing; 45° routing; up/down (vertical)-only

routing through vias; lateral-only routing that prohibits vias; and four

other options.

Nets may be assigned to groups that have design rules different from

other nets, e.g., larger trace-widths for power/ground nets, or larger

spacings for electrically sensitive nets. For DP nets, the input file

specifies the pitch of DP traces. It is understood that DP traces should

not be routed as close as possible if the target characteristic impedance,

e.g., 100 Ω, requires greater spacing.

Co-design requires different design rules for different physical

regions, e.g., fine-pitch lines on the die and coarse routing on the PCB.

The input file therefore defines design-rule zones to which each design-

rule set applies. Such zones can apply to an entire routing layer, or to

sections of a given layer (e.g., using finer design rules for escape

routing).

2.3 Pin Swapping
Early in the co-design process, there may be flexibility in the assignment

of pins to/from a given component. RAM data-busses are common

examples, in which the ordering of bits within an eight-bit byte may be

scrambled to optimize physical routing. Such pin-swapping is achieved

in Acorn by locating the terminals of pin-swappable nets into a pin-swap

zone, as illustrated in Figure 4(a). In this example, two separate pin-

swap zones (in yellow) allow 8 pins to be swapped on the left, and a

separate 8 pins to be swapped on the right. Because the two pin-swap

zones are not contiguous, pins from the left swap-zone cannot be

swapped with those from the right.

To use Acorn for escape routing, a terminal of every net is placed

within a single swap-zone. For example, Figure 4(b) illustrates single-

layer escape-routing in which a terminal of every net was placed at the

lower-left corner of the perimeter pin-swap zone. Within pin-swap

zones, design-rule violations are allowed.

Figure 2: The definition of the routing map (b) includes the number of routing

layers and lateral extents (a) for each layer, including via layers (top).

Figure 3: Acorn creates traces and vias of the widths specified by in the input

file, and denoted above as rules 1, 2, and 3. Design-rule violations occur if the

minimum spacing rules, 4 through 9, are not satisfied by the routing.

Page 3 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

Differential pairs present a special case of pin-swapping; some

circuits allow the positive (P) and negative (N) nets of the DP to be

swapped without affecting performance. Such nets can be identified

with a flag in the netlist; there is no need to locate the DP terminals in a

pin-swap zone. Nonetheless, placing DP terminals in a pin-swap zone

automatically defines the DP as P/N-swappable, but the P- and N-traces

of the DP are always routed together. For example, the P-net is never

arbitrarily exchanged with an unrelated net from the same pin-swap

zone.

2.4 Escape Routing
As illustrated above, a carefully constructed pin-swap zone can be used

for escape routing on a single layer. This concept may be extended to

study escape routing across one or more domains of the

die/package/PCB system. Figure 5(a) depicts a pin-swap zone (yellow)

beneath all the package-to-PCB solder balls. By locating the terminals of

all nets in this pin-swap zone, one may determine viable pin-maps for

the package-to-PCB connections. Extending this concept, a single pin-

swap zone can extend vertically across all routing layers surrounding

the perimeter of a PCB, as shown in Figure 5(b). Locating terminals of

all nets in this pin-swap zone prompts Acorn to find viable, violation-

free routing across the die, package, and PCB, as detailed further in

Section 4.3.

3 Algorithm
An overview of the algorithm is presented in the flowchart of Figure 6.

Before entering the iterative rip-up and reroute loop, Acorn reads user-

defined information from an ASCII text file, including the netlist; the

layout of die, package, and/or PCB; and the grid resolution, i.e., size in

µm of each cell in the map. In general, this dimension should be smaller

than the smallest linewidth plus spacing.

The algorithm terminates if (a) the number of iterations has exceeded

the user-defined limit, or (b) the solution is deemed adequate. An

adequate solution is achieved if at least Ngood iterations resulted in

routing that is free of design-rule violations. A complex design with

many nets should naturally require more iterations than a simpler

design with fewer nets. Likewise, the minimum threshold Ngood also

depends on Nnets. This dependence was arbitrarily chosen as Ngood =

20∙log10(Nnets), i.e., Ngood grows slowly with Nnets. For example, in a 100-

net design, at least 40 iterations must result in violation-free routing.

Consequently, a successful run results in many viable routing options.

Acorn highlights which iteration represents the lowest-cost option, i.e.,

that with the lowest via count and shortest aggregate net length,

accounting for user-defined cost-zones.

3.1 Routing Grid Definition
For a system with Nlayers routing layers, the routing grid consists of Nlayers

two-dimensional grids that represent the X/Y extent of the entire map.

At each cell, Acorn initially stores the following information:

• which design-rule applies;

• whether the cell is part of a user-defined cost-zone;

Figure 4: Pin-swap zones in (a) allow for 8 nets to be interchanged in each byte.

In (b), all nets are placed in a single pin-swap zone to assess escape routing.

Figure 5: Escape routing can be assessed with low-cost pin-swap zones

(yellow) placed horizontally beneath a package, as in (a), to assess viable

BGA maps. In (b), escape routing on multiple PCB layers can be assessed

with vertically stacked pin-swap zones.

Figure 6: Flowchart of Acorn algorithm. Green outlines denote compute-

intensive steps that are highly parallelized. Yellow outline highlights the

compute-intensive steps described in Section 3.3.

Page 4 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

• whether the cell is part of a pin-swap zone; and

• whether the cell contains a barrier to prohibit routing in the X/Y

plane or vertically to another layer.

Acorn does not maintain separate layers for inter-level vias, so via

barriers are stored in the routing cell with the ability to distinguish

between barriers to upward-going and downward-going vias, and/or

barriers to lateral routing in the X/Y plane.

For each pair of DP nets, Acorn creates a pseudo-path whose width

spans the widths of both DP nets when routed at their prescribed pitch

(as described in Section 3.3). Likewise, Acorn creates pseudo start- and

end-terminals for each pair. These terminals are located at the

midpoints of the DP nets’ terminals.

3.2 Iterative A* Routing
Excluding DP nets, A* pathfinding is applied to each net and pseudo-net

during every iteration. (DP net routing is derived from these pseudo-

nets, and is covered in the next section.) Because each net’s routing

depends only on the congestion costs from previous iterations, the

results do not depend on the sequence of routing the nets.

From each cell in the map, the algorithm evaluates jumps in up to 18

directions, as depicted in Figure 7. While short of any-angle grid-based

schemes (e.g., [17]), Acorn’s scheme allows lateral routing at angles of

0°, 26.6° [tan-1(½)], 45° [tan-1(1)], 63.4° [tan-1(2)], 90°, etc. The input

file defines which of these directions are allowed in any given region of

the design.

A* attempts to find the path with the minimum F-cost [18]. At each

cell (x, y, z) in the explored map, F is the sum of a G-cost and a heuristic

function, H:

𝐹(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑦, 𝑧) + 𝐻(𝑥, 𝑦, 𝑧)

The heuristic function is a lower estimate of the G-cost between a

given cell and the net’s end-terminal. If the absolute values of the

components of this distance are denoted by Δx, Δy, and Δz, Acorn

calculates the heuristic based on the allowed directions that are

permitted from the given cell:

𝐻(Δ𝑥, Δ𝑦, Δ𝑧)

=

{

 𝑏𝑥𝑦√Δx2 + Δy2 + 𝑏𝑧Δ𝑧 𝑓𝑜𝑟 𝑎𝑙𝑙 − 𝑎𝑛𝑔𝑙𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔

𝑏𝑥𝑦(Δ𝑦√2 + Δ𝑥 − Δ𝑦) + 𝑏𝑧Δ𝑧 𝑓𝑜𝑟 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ Δ𝑥 > Δ𝑦

𝑏𝑥𝑦(Δ𝑥√2 + Δy − Δx) + 𝑏𝑧Δ𝑧 𝑓𝑜𝑟 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ Δ𝑦 > Δx

𝑏𝑥𝑦(Δ𝑥 + Δ𝑦) + 𝑏𝑧Δ𝑧 𝑓𝑜𝑟 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 − 𝑜𝑛𝑙𝑦 𝑟𝑜𝑢𝑡𝑖𝑛𝑔

In the expressions above, bxy and bz are the base values for,

respectively, a lateral move to an adjacent cell and a vertical jump to one

layer above or below. These values are significantly smaller in the small

pin-swap zones than in normal, non-pin-swap zones that constitute

most of the routing area. The values of bxy and bz are tabulated in Table

1 below.

Table 1: Base values bxy and bz for calculating H- and G-cost values.

 Pin-swap Zones Normal Zones

bxy 10 10∙230

bz 10 10∙230 ∙NvertCost,

The base-costs in pin-swap zones are at least 109 (230) times smaller

than in the normal, non-pin-swap zones. (The factor of 230 enables fast

binary arithmetic.) The purpose of pin-swap zones is to allow nets to

freely explore regions with relatively low cost. Acorn prohibits A* from

routing any net into these low-cost pin-swap zones. Instead, nets may

route within such zones, and they may exit such zones into higher-cost

areas. This ensures that the heuristic function remains admissible, since

pathfinding for pin-swappable nets always begins in the low-cost pin-

swap zones.

The parameter NvertCost in Table 1 is a dimensionless ratio (>1) of the

user-defined DvertCost divided by the cell size. DvertCost represents the

lateral distance that Acorn should laterally route a trace around an

obstacle rather than creating vias to route above/below the obstacle.

Larger values of DvertCost result in routing with fewer vias.

For the G-cost, Acorn includes two components: a distance-related

cost, Gdist, and a congestion-related cost, Gcong.

𝐺(𝑥, 𝑦, 𝑧) = 𝐺𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑧) + 𝐺𝑐𝑜𝑛𝑔(𝑥, 𝑦, 𝑧)

Gdist is the cost of travelling from the start-terminal to (x,y,z). Like the

heuristic function, Gdist is based on the base costs bxy and bz, whose values

differ markedly between pin-swap and normal zones (Table 1). In

addition, Gdist may account for user-defined cost zones. In such optional

cost zones, Gdist is increased by an integer multiplier to minimize routing

on a certain layer or in a certain area.

The congestion-related G-cost, Gcong, is an added penalty for routing

through cells that, in previous iterations, were traversed by other nets.

There is no penalty for a path to traverse a cell that previously was

traversed only by the same net; self-congestion adds no penalty, unlike

foreign congestion. (In the context of a hypothetical ant colony, each ant

is repulsed by the pheromones of other ants, but is not repelled by its

own scent.)

In pin-swap zones, Gcong is defined as zero. In the remainder of the

map, Gcong is the product of five factors for each cell along a path:

• The number of times the cell has been traversed by foreign nets,

• A multiplier that scales with the base costs of the cell (bxy or bz),

• A geometric multiplier that estimates a typical distance needed

to detour around the nets that caused the congestion (generally

based on design rules and net lengths),

• The user-defined cost-zone multiplier, if applicable, as described

above, and

• A dynamic sensitivity factor that increases slowly during early

iterations, and which Acorn can later adjust with the goal of

reducing design-rule violations.

Consistent with the decay of pheromones in IACO, the first factor in

the above list is reduced at the end of each iteration. For each path that

traverses the cell, Acorn reduces the count by 10%.

In the context of IACO, the last factor in the above list – the sensitivity

to foreign congestion—may be interpreted as the degree to which an ant

is repelled by the pheromones of other ants. Varying this factor has

proven effective in achieving good routing results. Unlike changes to the

amount of deposited pheromones (congestion cost), the sensitivity

factor can be modulated for a single iteration without affecting the

pheromone (congestion) map.

During A* pathfinding, the congestion-related G-cost is calculated for

only the centerline of the net being routed. To avoid foreign nets,

therefore, Acorn deposits congestion far from each net’s centerline, and

indeed beyond the width of its traces and via. Figure 8 illustrates the

location of deposited congestion (grey) for six nets (red) routed on a

single layer. The deposited congestion repels the centerlines of foreign

nets by increasing their congestion-related G-costs. Note that

congestion overlaps with foreign traces but does not overlap with the

centerlines of such traces. By calculating the appropriate locations for

depositing congestion, Acorn can converge to routing that is free of

design-rule violations.

Figure 7: Opaque tiles represent the 18 allowed cell-to-cell transitions from

the central black tile. From the central black cell, the allowed in-plane

transitions are 0°, 26.6° [tan-1(½)], 45° [tan-1(1)], 63.4° [tan-1(2)], 90°, etc.

Page 5 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

To avoid design-rule violations in complex designs, Acorn calculates

an appropriate distance from each net for depositing congestion,

including congestion for:

1. Different width and spacing rules for traces, upward-going vias,

and downward-going vias,

2. Different width and spacing rules for power/ground nets, signal

nets, and DP pseudo-nets (described in next section),

3. Boundaries between different design-rule zones, at which

linewidths and spacings can change.

As an example of item (1), Acorn deposits trace-related congestion

nearby a trace, but must deposit via congestion farther away from the

trace to repel large-diameter vias from being routed near the trace. For

this reason, Acorn keeps track of three congestion attributes at each cell:

the amount of congestion, the path that caused it, and the shape-type

that caused it (trace, upward-, or downward-going via).

3.3 DP Post-Processing
ACO, IACO, and NC algorithms are well suited to attract or repel nets

from each other. However, differential pair nets present unique

challenges. These nets must route close to one another, but not too close.

Despite attempts to develop more elegant solutions, it was decided to

collapse both DP nets into a single ‘pseudo-path,’ which is treated by A*

in a manner similar to non-DP paths (not unlike [9]).

Near the end of each iteration, after pseudo-paths have been routed

along with non-DP paths, Acorn performs four post-processing steps for

DP nets before checking for design-rule violations. These are listed

below and illustrated in Figure 9.

1. Create traces on both sides of the pseudo-path, separated by the

user-defined pitch for the given DP (Figure 9(b)),

2. Remove portions of the DP traces from step (1) to allow for

graceful transitions from DP traces to vias (Figure 9(c)).

3. Create vias for each DP net where the pseudo-path transitions

between layers (Figure 9(d)),

4. Connect the DP traces to DP vias using A* pathfinding, which

respects the deposited congestion from neighboring nets

(Figure 9(e)).

Step 4 is compute-intensive and includes pre-calculations that

determine which of the two DP traces should connect to each DP via.

(Unlike the example in Figure 9(e), this decision is not obvious in highly

symmetric DP routing.) Despite the run-time penalty, careful attention

to DP traces and vias has enabled faster convergence to violation-free

solutions.

3.4 Real-time Algorithm Tuning
Over the course of many rip-up-and-reroute iterations, the routing

occasionally converges to a steady state that contains design-rule

violations. Three strategies are employed to avoid such situations:

1. Exchanging the start- and end-terminals of nets that have

violations,

2. Changing the congestion sensitivities for all nets, thereby

changing the G-cost in the A* pathfinding, and

3. Rarely, depositing permanent (non-evaporating) congestion in

regions with persistent design-rule violations.

As a concrete example, Figure 10 shows the aggregate path length as a

function of Acorn run-time over 857 iterations for a 356-net, 5-layer test

case. The path length (green) initially increases before converging to a

relatively stable value. Each blue dot represents one of 139 iterations

with no design-rule violations. When Acorn detects an unwanted

plateau in the aggregate length, it selects one of the above three

strategies to upset the routing configuration. These strategies are

detailed below.

Figure 9: In place of DP nets, A* is used to route wide pseudo-paths (a),

consisting of pseudo-traces (white) and pseudo-vias (gold). Acorn then

creates parallel traces along the edges of the pseudo-traces (b) before

removing segments near pseudo-vias (c). DP vias are created (d),

consistent with design rules for each layer. Finally, A* routing is used to

bridge the gaps along the DP nets, depicted by the yellow traces in (e).

Figure 8: Traces (red) and their associated congestion (grey). In the

absence of design-rule violations, no trace’s centerline overlaps with

another net’s congestion.

Page 6 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

Acorn exchanges the start-/end-terminals to alter the routing when

multiple routes have equivalent F-costs for the same net. Acorn’s

implementation of A* deterministically selects one of these lowest-cost

routes from iteration to iteration. But when start/end-terminals are

exchanged, Acorn can select a different route with equivalent F-cost.

Acorn modulates the congestion sensitivity, which is one of the

factors that constitutes Gcong, to change the cost for nets to cross each

other’s paths. This sensitivity has no effect on Gdist and therefore has no

direct effect on nets without design-rule violations.

Figure 11 provides a conceptual diagram of the aggregate F-cost from

all nets as a function of the (infinity of) routing configurations. In Figure

11(a) are three local minima (A, B, C) and a global minimum (D) – the

latter representing a routing configuration with design-rule violations.

For zero or small values of the congestion sensitivity (small Gcong), the

global minimum will always represent a routing configuration with

design-rule violations, except for trivially simple problems. By

increasing the congestion sensitivity (Figure 11(b)), Acorn increases the

cost of configurations that contain design-rule violations without

affecting violation-free configurations. Eventually, this will cause local

minimum C, which contains no violations, to become a global minimum

at which Acorn attempts to converge.

If the congestion sensitivity is increased too much, however, Acorn

has been found to converge to configurations that are obviously

suboptimal. Figure 11(c) is one explanation; the cost-barrier between

violation-free configurations A and C becomes so large that Acorn

converges to local minimum A rather than global minimum C.

No theoretical attempt has been made to predict the optimal

congestion sensitivity a priori for a given case. Instead, Acorn gradually

increases the sensitivity early in the run (yellow region in Figure 10)

before settling on an arbitrary (but deterministic) value. If persistent

design-rule violations persist after at least 60 iterations, then Acorn

significantly increases the sensitivity by 41% (by a factor of √2). At the

end of an additional 60 iterations, Acorn compares the quality of the

routing at the two sensitivity values. If the higher value resulted in

equivalent or better routing metrics, the sensitivity is increased again

by √2x. Such increases continue every 60 iterations until the routing

metrics begin to degrade, at which point Acorn decreases the sensitivity

to congestion. This coarse gradient-descent is inspired by simulated

annealing (SA) algorithms in which the temperature is adjusted to

modulate the likelihood of overcoming cost barriers. A large congestion

sensitivity in Acorn (Figure 11(c)) is analogous to a low SA temperature;

both inhibit transitions between local cost-minima in complex systems.

Acorn deposits permanent congestion in rare situations at locations

that persistently exhibit a specific type of design-rule violation. The

congestion is intended to repel DP pseudo-traces when violations on the

associated DP traces cannot be resolved through the normal IACO

process. Such persistent violations can occur when user-defined

barriers constrain vias to a small region, such as the die-to-package or

package-to-PCB interface where such vias are constrained in

rectangular or hexagonal (staggered) arrays. The permanent congestion

causes the A* pathfinder to add a pseudo-via to a layer that is less

crowded with DP traces.

Finally, Acorn introduces a pseudorandom component into the

routing for all iterations that exhibit design-rule violations. Specifically,

Figure 10: As a function of run-time, the total routing length (green) and number of design-rule violations (red) are plotted. Blue points represent 139 iterations

with violation-free solutions. Yellow region and dashed lines denote when routing parameters were modified to reduce path costs and design-rule violations.

Page 7 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

for all nets that contain design-rule violations during an iteration, Acorn

randomly selects a small number of nets (1-3) to have their congestion

sensitivities temporarily modified on the subsequent iteration. For

some nets, the sensitivity will increase by as much as 400%; for others,

it will reduce by up to 98%. Such temporary, single-iteration changes

can significantly disrupt the routing, but are believed to enable

convergence to routing configurations with overall lower costs, while

avoiding oscillatory routing behavior, similar to [11]. Acorn behaves

deterministically despite these pseudorandom effects.

4 Experimental Results
The Acorn algorithm was developed in the C programming language

with use of the OpenMP libraries for multithreading and LibPng

libraries to generate routing layouts for viewing in a web interface.

More than 300 small regression test cases with 1 to 30 nets were

created to validate routing and design-rule checking (e.g., Figure 4(b)).

Larger test cases with 356 nets were created to mimic industry routing

challenges – especially in the package. Relative to typical industry

designs, these large test cases have comparable routing areas, design

rules for linewidths and spacings, and densities of terminals. The 356-

net cases used a grid-size of 20 µm.

For these large test cases, the software was run on Linux using 16-,

32-, and 64-threaded Arm-based, compute-optimized, Amazon

Graviton3 processors from Amazon Web Services with memory equal to

2 GB per thread.

4.1 IC Package Routing
To simulate the routing of a flip-chip package, 365 two-terminal nets

were arranged in a netlist to route from realistic C4 sites on the top layer

of the package (near the die) to solder balls in the ball-grid array on the

bottom layer. The netlist included 24 differential pairs (i.e., 48 DP nets),

in addition to 15 two-terminal power/ground nets with larger

linewidths. Depending on the electrical performance requirements, a

package of this size and wire density could easily require eight metal

layers, including the bottom layer dedicated largely to solder balls. For

this test case, only five layers were included because Acorn does not

route power/ground planes.

Figure 12(a) shows the lowest-cost routing configuration for this

package, with quadrants of each layer in Figures 12(b)-(f). The lack of

significant routing in the center of the package and on layers 4 and 5 was

intentional; these regions were defined as high-cost zones, thereby

forcing Acorn to avoid routing in these areas. In a real package, such

zones could be used for power/ground planes.

The routing metrics for this test case are plotted in Figure 10. Using

16 threads, Acorn required 13.6 hours to complete 857 iterations,

including 139 iterations with no design-rule violations. The first

iteration without such violations was found after only 4.0 hours.

However, the lowest-cost iteration was found at 10.9 hours. Subsequent

iterations had comparable (but higher) costs. The aggregate path length

of this lowest-cost configuration was 4.6% longer than the value derived

from simply connecting each start- and end-terminal with a straight line.

The number of vias in the design was the theoretical minimum for the

net- and layer-counts, largely due to a large value used for DvertCost

(15,000 µm), which was more than half the lateral size of the entire

package. This choice made each via costly relative to lateral routing.

4.2 Package and PCB Routing
To assess Acorn with simultaneous package and PCB routing, three PCB

layers were added to the five-layer package described in the previous

section. A netlist for a fully populated PCB was not available, so this case

instead investigated PCB escape-routing from the package. Unlike

typical PCB escape-routing studies, however, BGA sites were not

assigned to specific nets. Instead, these package-to-PCB solder-balls

sites were flexible waypoints for nets to negotiate among each other.

More solder-ball sites were defined than required by the netlist to

enable traces to negotiate for the limited BGA waypoints.

Similar to Figure 5(b), all nets’ PCB terminals for this test were

located in pin-swap zones on the perimeter of the PCB. Acorn therefore

attempted to find the shortest paths to this perimeter using the fewest

vias without violating design rules. Like the previous test case, DvertCost

was 15,000 µm for this run.

Acorn achieved 146 violation-free routing configurations during

1320 iterations over the course of 60 hours using 32 threads. Routing

on the package layers was qualitatively similar to the previous case

(Figure 12). Figure 13 shows the overall routing and the PCB routing.

Figure 13: Lowest-cost routing configuration for a 356-net case using five

package routing layers and three PCB layers. All eight layers are shown in (a),

with PCB layers shown in (b)-(d). PCB terminals are located in pin-swap

zones that extend across all three PCB layers at their perimeter.

Figure 12: Lowest-cost routing configuration for a 356-net package using

five routing layers. Layer 5 is the BGA layer; faint circles around BGA pairs

indicate DP nets.

Page 8 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

4.3 Die, Package, PCB Routing
Simultaneous die, package, and PCB routing was tested by adding a die-

level RDL layer to the case described in the previous section. 356

terminals of silicon I/O buffers were assigned to realistic locations on

the die perimeter. Acorn routed RDL traces with a pitch of 16 µm to C4

sites, representing the die-to-package electrical interface. More die-to-

package C4 sites were defined than this net-count to enable RDL traces

to negotiate for the limited C4 waypoints.

Similar to Figure 5(b), all nets’ PCB terminals for this test were

located in pin-swap zones on the perimeter of the PCB. Acorn therefore

attempted to find the shortest paths to this perimeter using the fewest

vias without violating design rules. DvertCost was 5,000 µm for this run.

Acorn achieved 139 violation-free routing configurations during

1850 iterations over the course of 91 hours using 64 threads. Figure 14

shows the overall routing. For the package and PCB layers, the routing

was qualitatively similar to the previous cases (Figures 12 and 13). The

die-level routing is highlighted in the insets of Figure 14.

5 Conclusions
As a proof-of-concept, the algorithm described herein exhibits potential

for co-design across the die, package, and PCB domains. It provides

multiple, viable, routing configurations for industry-like design cases,

albeit with run-times that extend to hours or even days. The solution

proposed herein is not expected to provide an optimal solution within

any given domain; its utility instead is its ability to span multiple

domains without dependencies on other software tools – proprietary or

otherwise.

Acknowledgements

The author wishes to thank former engineering colleagues at NXP

Semiconductors for ideas that inspired and shaped the present work.

REFERENCES

1 Mahendrasing Patil, Amit Brahme, Michael Shust, Keven Coates, Shubhada Thatte, Sreekanth Soman, Kamal Kumar, "Chip-

package-board co-design for Complex System-on-Chip (SoC)," 19th Topical Meeting on Electrical Performance of Electronic

Packaging and Systems, 2010, pp. 273-276.
2 Humair Mandavia, Kazunari Koga, Ralf Brüning, Nikola Kontic, "System I/O Optimization with SoC, SiP, PCB Co-Design,"

2015 European Microelectronics Packaging Conference (EMPC), Friedrichshafen, Germany, 2015, pp. 1-4.
3 Thomas Brandtner, Klaus Pressel, Natalia Floman, Michael Schultz, Michael Vogl, "Chip/Package/Board Co-Design

Methodology Applied to Full-Custom Heterogeneous Integration," 2020 IEEE 70th Electronic Components and Technology

Conference (ECTC), 2020, pp. 1718-1727.
4 Guy Theraulaz, Eric Bonabeau, “A Brief History of Stigmergy,” Artificial Life. 1999 Spring, 5(2), pp. 97-116.
5 Larry McMurchie, Carl Ebeling, "PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs," Third

International ACM Symposium on Field-Programmable Gate Arrays, Napa Valley, CA, USA, 1995, pp. 111-117.
6 Russell Tessier, "Negotiated A* Routing for FPGAs,” Proceedings of The Fifth Canadian Workshop on Field-Programmable

Devices, 1998 (FPD98).
7 Pak K. Chan, Martine D.F. Schlag, "Acceleration of an FPGA Router," in 1997 IEEE Workshop on FPGAs for Custom

Computing Machines, pp. 175-181, 1997.
8 Pak K. Chan, Martine D.F. Schlag, "New Parallelization and Convergence Results for NC: A Negotiation-Based FPGA Router,"

FPGA 2000: pp. 165-174.

Figure 14: Lowest-cost routing configuration for a 356-net case using one RDL layer, five package routing layers, and three PCB layers. All nine layers are shown

at left. Insets show the die-level terminals (green), routing (red) and the die-to-package C4 connections (blue). Some C4 sites were not used for routing (white).

Page 9 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne

9 Ting-Chou Lin, Devon Merrill, Yen-Yi Wu, Chester Holtz, Chung-Kuan Cheng, "A Unified Printed Circuit Board Routing

Algorithm with Complicated Constraints and Differential Pairs," ASPDAC '21: Proceedings of the 26th Asia and South Pacific

Design Automation Conference, January 2021, pp. 170–175.
10 Jośe Capela Dias, Penousal Machado, Daniel Castro Silva, Pedro Henriques Abreu, "An Inverted Ant Colony Optimization

Approach to Traffic," Engineering Applications of Artificial Intelligence 00 (2014) pp. 1–20.
11 Tri-Hai Nguyen, Jason J. Jung, “ACO-based Traffic Routing Method with Automated Negotiation for Connected Vehicles,”

Complex & Intelligent Systems (2023) 9, pp. 625–636.
12 Jia-Wei Fang, Kuan-Hsien Ho, Yao-Wen Chang, "Routing for Chip-Package-Board Co-Design Considering Differential

Pairs," 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 512-517.
13 Jia-Wei Fang, Yao-Wen Chang, "Area-I/O Flip-Chip Routing for Chip-Package Co-Design," 2008 IEEE/ACM International

Conference on Computer-Aided Design, San Jose, CA, USA, 2008, pp. 518-522.
14 Jia-Wei Fang, Martin D. F. Wong, Yao-Wen Chang, "Flip-Chip Routing with Unified Area-I/O Pad Assignments for Package-

Board Co-Design," 2009 46th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 2009, pp. 336-339.
15 Jia-Wei Fang, Yao-Wen Chang, "Area-I/O Flip-Chip Routing for Chip-Package Co-Design Considering Signal Skews," in

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 5, May 2010, pp. 711-721.
16 Jeffrey McDaniel, Daniel Grissom, Philip Brisk, "Multi-terminal PCB Escape Routing for Digital Microfluidic Biochips using

Negotiated Congestion," 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC), Playa del Carmen,

2014, pp. 1-6.
17 Kenny Daniel, Alex Nash, Sven Koenig, Ariel Felner, "Theta*: Any-Angle Path Planning on Grids," Journal of Artificial

Intelligence Research 39 (2010), pp. 533-579.
18 Peter E. Hart, Nils J. Nilsson, Bertram Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths,"

in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, July 1968, pp. 100-107.

