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Abstract 

Routing software is often optimized for only one of the three physical 

domains of electronic systems: the silicon die, the printed circuit board 

(PCB), or the intervening package. System-level architects must ensure 

that physical connectivity can be achieved among these domains, in 

addition to satisfying system-level electrical performance 

requirements. Simply achieving connectivity can require weeks or 

months of engineering effort, with experts in each domain iteratively 

adjusting their physical designs using specialized software tools. 

To address system-level connectivity, the present work describes an 

open-source, exploratory tool to provide initial guidance to system, 

package, or PCB designers. The tool is not expected to provide an 

optimal solution within any given domain; its utility instead is its ability 

to span multiple domains without dependencies on other software tools 

– proprietary or otherwise. 

Given the person-weeks of effort often required for traditional 

die/package/PCB co-design, this utility prioritizes capability over 

speed. The proof-of-concept version achieved full connectivity within 

four days for an industry-like routing configuration that include a PCB, 

a ball-grid-array (BGA) package with a C4-bumped die, and coarse 

routing on the silicon die. The rip-up-and-reroute algorithm employs A* 

pathfinding in a three-dimensional, grid-based array; negotiated 

congestion that dissipates over time, similar to inverted ant colony 

optimization; and concepts borrowed from simulated annealing to 

avoid local minima in the routing cost. 
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1 INTRODUCTION 
Simultaneously designing a silicon chip, printed circuit board (PCB), and 

intervening package is necessary for launching new electronic systems 

that are optimized for performance or cost. The technical and 

organization challenges of this co-design process are well documented, 

e.g. [1,2], including newer challenges associated with the increasing use 

of packages containing multiple, heterogeneous silicon [3]. Electronic 

design automation (EDA) vendors offer a growing array of tools aimed 

at these challenges. Some tools are vendor-agnostic, although many are 

understandably optimized to integrate with software tools from a single 

vendor. Inter-company co-design, which can be complicated by 

organizational barriers, may also suffer from a lack of EDA 

interoperability. These challenges serve as the motivation for an open-

source utility‡ intended to enable co-design from on-silicon I/O buffers 

to components on the PCB.  

1.1 Problem Scope 
With the challenges described above, a non-proprietary utility would be 

useful for system-level designers to work with chip-, package-, and PCB-

designers for assessing the routability of various design configurations 

across these three domains. For any one domain, a fully optimized and 

manufacturable design is beyond this work’s scope; EDA vendors 

provide solutions for domain-specific optimization, from length-

matching to design-for-manufacturability. As depicted in Figure 1, the 

scope of the current work is the routing of: 

• Top-level silicon traces, such as a coarse redistribution 

layer (RDL), with C4/pillar connections to a flip-chip 

package,  

• Flip-chip packages with a ball-grid array (BGA) 

interface to a PCB, 

• PCB routing. 

 

The scope of the current work is limited to planar routing on a die, 

package, and PCB. Connections between routing layers are limited to 

vertical connections such as laser vias, solder balls, copper pillars, or 

C4s. It is understood that linewidths and spacings vary dramatically 

between the die, package, and PCB. Likewise, such dimensions can vary 

within different regions of the package and from net to net. 

Finally, the current work is limited to routing two-terminal nets, 

including differential pair (DP) nets. Such nets frequently offer bigger 

co-design challenges than multi-terminal power and ground nets.  

In the interest of brevity, the routing utility is referred to as Acorn; a 

name based on its inspiration from Ant-Colony Optimization for Routing 

Nets. Inspired by biological, stigmergic systems like insect colonies and 

hives [4], Acorn employs the A* algorithm so that nets are repelled by 

congestion (pheromones) deposited by other nets (organisms). 

1.2 Previous Work 
Two overlapping areas of previous research are described in this 

section related to the chip, package, and PCB domains: (1) general net-

routing solutions, and (2) those focused on co-design. 

McMurchie et al. [5] developed a negotiated congestion (NC) router 

that iteratively ripped up and rerouted nets while monotonically 

increasing the congestion cost along occupied routing paths. Tessier 

augmented NC with depth-first A* pathfinding [6]. Chan et al [7, 8] 

accelerated the compute-time of the NC router using separate CPUs to 

route each net in parallel, in addition to other speed-up features. Lin et 

al. [9] utilized NC and A* pathfinding in a system with flexible physical 

constraints, including irregular arrangements of terminals. 

Beyond the microelectronics literature, Dias et al. [10] combined 

inverted ant-colony optimization (IACO) with the breadth-first Dijkstra 

algorithm for optimizing roadway traffic. Nguyen et al. [11] used a 

similar approach called the ‘inverted pheromone model’, introducing 

randomization to avoid oscillatory traffic behavior. 

In the co-design literature, Fang et al. [12,13] addressed chip, 

package, and PCB co-design using integer linear programming (ILP) 

techniques, including the routing of DP nets and on-die routing. This 

work was later extended to allow the router to select different solder 

bumps, or waypoints, between the die and package to optimize the 

routing [14]. Further efforts addressed multiple layers of on-die routing, 

or redistribution layers (RDLs) [15].  

 
Figure 1: Scope of the current work: PCB, package, and limited die routing. 

‡  Source code available at https://github.com/danboyne/ACORN 
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1.3 New Contributions of Current Work 
Like the NC-based router in Lin et al. [9], this work allows for flexible 

definitions of the layout constraints. Acorn differs from previous NC-

based routers by allowing for the cost of congested routing resources to 

reduce over time as nets negotiate alternative routes, as is common in 

IACO-based methods used in optimizing roadway traffic. Acorn 

augments previous grid-based routers by allowing for up to 16 routing 

directions: 0°, 26°, 45°, 63°, 90°, …. Further, subsets of these directions 

can be applied to different regions, e.g., to allow only Manhattan routing.  

Unlike [9], the connections in Acorn between the traces of differential 

pair nets and their terminals are flexible enough to minimize trace 

lengths at each terminal, regardless of whether the pair is P/N-

swappable. The same applies to the connections between differential 

pair traces and each inter-level via. 

This work introduces 2- and 3-dimensional routing zones with near-

zero routing cost and zero congestion cost, and in which design-rule 

violations are allowed. By placing terminals within such zones, the 

associated nets become ‘swappable’ among each other. In the extreme 

case, all nets can have one of their two terminals placed in such a zone 

to use the router for unordered, multilayer escape-routing. 

To the author’s knowledge, this is the first rip-up-and-reroute 

algorithm that can make large, stepwise changes to routing costs and 

subsequently assess those changes’ effects on routing quality, thereby 

predicting whether additional changes would further improve the 

routing. 

2 Problem Formulation 
Acorn reads all input information from a text file, including the netlist, a 

physical description of the available routing regions, design rules, and a 

small number of control parameters. As in [16], another input is the 

maximum number of iterations to execute before giving up. This 

acknowledges that convergence to a solution free of design-rule 

violations is not guaranteed by negotiated congestion (NC) or inverted 

ant-colony optimization (IACO) algorithms. 

2.1 Routing Boundaries and Costs 
The input text file defines the number of routing layers and intervening 

via layers, including the allowed areas for routing on each of these 

layers. Routing barriers of arbitrary shape are accommodated, resulting 

in systems like that shown in Figure 2(b). In this example are 5 routing 

layers and 4 via layers, including the regions on each layer where lateral 

and vertical routes are allowed. 

The input file may include increased costs for routing in any region of 

any layer, thereby prompting Acorn to avoid routing in such regions.  
 

2.2 Routing Design Rules 
Acorn checks for minimum spacing between different nets, which 

consist of traces and interlevel vias. Trace widths and via diameters are 

specified in the input file and guaranteed by design. For design-rule 

checking, vias are subdivided into two types: upward-going and 

downward-going vias, each of which may have different diameters and 

minimum spacing. Figure 3 depicts the three shape-types (Trace, Via Up, 

and Via Down) and the 9 design-rules required in the input file, 

including the minimum allowed spacings between each of the three 

shape-types. 
 

In addition to widths and spacings, the input file may specify the 

allowed routing directions. In this way, the allowed angles of routing 

may be constrained: all-angle routing, subject to the constraints listed in 

Section 3.2); Manhattan routing; 45° routing; up/down (vertical)-only 

routing through vias; lateral-only routing that prohibits vias; and four 

other options. 

Nets may be assigned to groups that have design rules different from 

other nets, e.g., larger trace-widths for power/ground nets, or larger 

spacings for electrically sensitive nets. For DP nets, the input file 

specifies the pitch of DP traces. It is understood that DP traces should 

not be routed as close as possible if the target characteristic impedance, 

e.g., 100 Ω, requires greater spacing. 

Co-design requires different design rules for different physical 

regions, e.g., fine-pitch lines on the die and coarse routing on the PCB. 

The input file therefore defines design-rule zones to which each design-

rule set applies. Such zones can apply to an entire routing layer, or to 

sections of a given layer (e.g., using finer design rules for escape 

routing).  

2.3 Pin Swapping 
Early in the co-design process, there may be flexibility in the assignment 

of pins to/from a given component. RAM data-busses are common 

examples, in which the ordering of bits within an eight-bit byte may be 

scrambled to optimize physical routing. Such pin-swapping is achieved 

in Acorn by locating the terminals of pin-swappable nets into a pin-swap 

zone, as illustrated in Figure 4(a). In this example, two separate pin-

swap zones (in yellow) allow 8 pins to be swapped on the left, and a 

separate 8 pins to be swapped on the right. Because the two pin-swap 

zones are not contiguous, pins from the left swap-zone cannot be 

swapped with those from the right. 

To use Acorn for escape routing, a terminal of every net is placed 

within a single swap-zone. For example, Figure 4(b) illustrates single-

layer escape-routing in which a terminal of every net was placed at the 

lower-left corner of the perimeter pin-swap zone. Within pin-swap 

zones, design-rule violations are allowed. 

 
Figure 2: The definition of the routing map (b) includes the number of routing 

layers and lateral extents (a) for each layer, including via layers (top). 

 
Figure 3: Acorn creates traces and vias of the widths specified by in the input 

file, and denoted above as rules 1, 2, and 3. Design-rule violations occur if the 

minimum spacing rules, 4 through 9, are not satisfied by the routing. 
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Differential pairs present a special case of pin-swapping; some 

circuits allow the positive (P) and negative (N) nets of the DP to be 

swapped without affecting performance. Such nets can be identified 

with a flag in the netlist; there is no need to locate the DP terminals in a 

pin-swap zone. Nonetheless, placing DP terminals in a pin-swap zone 

automatically defines the DP as P/N-swappable, but the P- and N-traces 

of the DP are always routed together. For example, the P-net is never 

arbitrarily exchanged with an unrelated net from the same pin-swap 

zone. 

2.4 Escape Routing 
As illustrated above, a carefully constructed pin-swap zone can be used 

for escape routing on a single layer.  This concept may be extended to 

study escape routing across one or more domains of the 

die/package/PCB system. Figure 5(a) depicts a pin-swap zone (yellow) 

beneath all the package-to-PCB solder balls. By locating the terminals of 

all nets in this pin-swap zone, one may determine viable pin-maps for 

the package-to-PCB connections. Extending this concept, a single pin-

swap zone can extend vertically across all routing layers surrounding 

the perimeter of a PCB, as shown in Figure 5(b). Locating terminals of 

all nets in this pin-swap zone prompts Acorn to find viable, violation-

free routing across the die, package, and PCB, as detailed further in 

Section 4.3. 

 

3 Algorithm 
An overview of the algorithm is presented in the flowchart of Figure 6. 

Before entering the iterative rip-up and reroute loop, Acorn reads user-

defined information from an ASCII text file, including the netlist; the 

layout of die, package, and/or PCB; and the grid resolution, i.e., size in 

µm of each cell in the map. In general, this dimension should be smaller 

than the smallest linewidth plus spacing.  

The algorithm terminates if (a) the number of iterations has exceeded 

the user-defined limit, or (b) the solution is deemed adequate. An 

adequate solution is achieved if at least Ngood iterations resulted in 

routing that is free of design-rule violations. A complex design with 

many nets should naturally require more iterations than a simpler 

design with fewer nets. Likewise, the minimum threshold Ngood also 

depends on Nnets. This dependence was arbitrarily chosen as Ngood = 

20∙log10(Nnets), i.e., Ngood grows slowly with Nnets. For example, in a 100-

net design, at least 40 iterations must result in violation-free routing. 

Consequently, a successful run results in many viable routing options. 

Acorn highlights which iteration represents the lowest-cost option, i.e., 

that with the lowest via count and shortest aggregate net length, 

accounting for user-defined cost-zones. 

3.1 Routing Grid Definition 
For a system with Nlayers routing layers, the routing grid consists of Nlayers 

two-dimensional grids that represent the X/Y extent of the entire map. 

At each cell, Acorn initially stores the following information: 

• which design-rule applies;  

• whether the cell is part of a user-defined cost-zone; 

 
Figure 4: Pin-swap zones in (a) allow for 8 nets to be interchanged in each byte. 

In (b), all nets are placed in a single pin-swap zone to assess escape routing. 

 
Figure 5: Escape routing can be assessed with low-cost pin-swap zones 

(yellow) placed horizontally beneath a package, as in (a), to assess viable 

BGA maps. In (b), escape routing on multiple PCB layers can be assessed 

with vertically stacked pin-swap zones. 

 
Figure 6: Flowchart of Acorn algorithm. Green outlines denote compute-

intensive steps that are highly parallelized. Yellow outline highlights the 

compute-intensive steps described in Section 3.3. 
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• whether the cell is part of a pin-swap zone; and  

• whether the cell contains a barrier to prohibit routing in the X/Y 

plane or vertically to another layer. 

Acorn does not maintain separate layers for inter-level vias, so via 

barriers are stored in the routing cell with the ability to distinguish 

between barriers to upward-going and downward-going vias, and/or 

barriers to lateral routing in the X/Y plane. 

For each pair of DP nets, Acorn creates a pseudo-path whose width 

spans the widths of both DP nets when routed at their prescribed pitch 

(as described in Section 3.3). Likewise, Acorn creates pseudo start- and 

end-terminals for each pair. These terminals are located at the 

midpoints of the DP nets’ terminals. 

3.2 Iterative A* Routing 
Excluding DP nets, A* pathfinding is applied to each net and pseudo-net 

during every iteration. (DP net routing is derived from these pseudo-

nets, and is covered in the next section.) Because each net’s routing 

depends only on the congestion costs from previous iterations, the 

results do not depend on the sequence of routing the nets.  

From each cell in the map, the algorithm evaluates jumps in up to 18 

directions, as depicted in Figure 7. While short of any-angle grid-based 

schemes (e.g., [17]), Acorn’s scheme allows lateral routing at angles of 

0°, 26.6° [tan-1(½)], 45° [tan-1(1)], 63.4° [tan-1(2)], 90°, etc.  The input 

file defines which of these directions are allowed in any given region of 

the design. 

 

A* attempts to find the path with the minimum F-cost [18]. At each 

cell (x, y, z) in the explored map, F is the sum of a G-cost and a heuristic 

function, H: 
 

𝐹(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑦, 𝑧) + 𝐻(𝑥, 𝑦, 𝑧) 
 

The heuristic function is a lower estimate of the G-cost between a 

given cell and the net’s end-terminal. If the absolute values of the 

components of this distance are denoted by Δx, Δy, and Δz, Acorn 

calculates the heuristic based on the allowed directions that are 

permitted from the given cell: 
 

𝐻(Δ𝑥, Δ𝑦, Δ𝑧)

=

{
 
 

 
 𝑏𝑥𝑦√Δx2 + Δy2 + 𝑏𝑧Δ𝑧   𝑓𝑜𝑟 𝑎𝑙𝑙 − 𝑎𝑛𝑔𝑙𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔                                                                    

𝑏𝑥𝑦(Δ𝑦√2 + Δ𝑥 − Δ𝑦) + 𝑏𝑧Δ𝑧   𝑓𝑜𝑟 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ Δ𝑥 >  Δ𝑦

𝑏𝑥𝑦(Δ𝑥√2 + Δy − Δx)  + 𝑏𝑧Δ𝑧   𝑓𝑜𝑟 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ Δ𝑦 >  Δx

𝑏𝑥𝑦(Δ𝑥 + Δ𝑦) + 𝑏𝑧Δ𝑧   𝑓𝑜𝑟 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 − 𝑜𝑛𝑙𝑦 𝑟𝑜𝑢𝑡𝑖𝑛𝑔                                                          

 

 

In the expressions above, bxy and bz are the base values for, 

respectively, a lateral move to an adjacent cell and a vertical jump to one 

layer above or below. These values are significantly smaller in the small 

pin-swap zones than in normal, non-pin-swap zones that constitute 

most of the routing area. The values of bxy and bz are tabulated in Table 

1 below.  
 

Table 1: Base values bxy and bz for calculating H- and G-cost values. 
 

 Pin-swap Zones Normal Zones 

bxy 10 10∙230 

bz 10 10∙230 ∙NvertCost, 
 

The base-costs in pin-swap zones are at least 109 (230) times smaller 

than in the normal, non-pin-swap zones. (The factor of 230 enables fast 

binary arithmetic.) The purpose of pin-swap zones is to allow nets to 

freely explore regions with relatively low cost. Acorn prohibits A* from 

routing any net into these low-cost pin-swap zones. Instead, nets may 

route within such zones, and they may exit such zones into higher-cost 

areas. This ensures that the heuristic function remains admissible, since 

pathfinding for pin-swappable nets always begins in the low-cost pin-

swap zones. 

The parameter NvertCost in Table 1 is a dimensionless ratio (>1) of the 

user-defined DvertCost divided by the cell size. DvertCost represents the 

lateral distance that Acorn should laterally route a trace around an 

obstacle rather than creating vias to route above/below the obstacle. 

Larger values of DvertCost result in routing with fewer vias. 

For the G-cost, Acorn includes two components: a distance-related 

cost, Gdist, and a congestion-related cost, Gcong. 
 

𝐺(𝑥, 𝑦, 𝑧) = 𝐺𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑧) + 𝐺𝑐𝑜𝑛𝑔(𝑥, 𝑦, 𝑧) 
 

Gdist is the cost of travelling from the start-terminal to (x,y,z). Like the 

heuristic function, Gdist is based on the base costs bxy and bz, whose values 

differ markedly between pin-swap and normal zones (Table 1). In 

addition, Gdist may account for user-defined cost zones. In such optional 

cost zones, Gdist is increased by an integer multiplier to minimize  routing 

on a certain layer or in a certain area.  

The congestion-related G-cost, Gcong, is an added penalty for routing 

through cells that, in previous iterations, were traversed by other nets. 

There is no penalty for a path to traverse a cell that previously was 

traversed only by the same net; self-congestion adds no penalty, unlike 

foreign congestion. (In the context of a hypothetical ant colony, each ant 

is repulsed by the pheromones of other ants, but is not repelled by its 

own scent.) 

In pin-swap zones, Gcong is defined as zero. In the remainder of the 

map, Gcong is the product of five factors for each cell along a path:  
 

• The number of times the cell has been traversed by foreign nets, 

• A multiplier that scales with the base costs of the cell (bxy or bz), 

• A geometric multiplier that estimates a typical distance needed 

to detour around the nets that caused the congestion (generally 

based on design rules and net lengths), 

• The user-defined cost-zone multiplier, if applicable, as described 

above, and 

• A dynamic sensitivity factor that increases slowly during early 

iterations, and which Acorn can later adjust with the goal of 

reducing design-rule violations. 
 

Consistent with the decay of pheromones in IACO, the first factor in 

the above list is reduced at the end of each iteration. For each path that 

traverses the cell, Acorn reduces the count by 10%.  

In the context of IACO, the last factor in the above list – the sensitivity 

to foreign congestion—may be interpreted as the degree to which an ant 

is repelled by the pheromones of other ants. Varying this factor has 

proven effective in achieving good routing results. Unlike changes to the 

amount of deposited pheromones (congestion cost), the sensitivity 

factor can be modulated for a single iteration without affecting the 

pheromone (congestion) map. 

During A* pathfinding, the congestion-related G-cost is calculated for 

only the centerline of the net being routed. To avoid foreign nets, 

therefore, Acorn deposits congestion far from each net’s centerline, and 

indeed beyond the width of its traces and via. Figure 8 illustrates the 

location of deposited congestion (grey) for six nets (red) routed on a 

single layer. The deposited congestion repels the centerlines of foreign 

nets by increasing their congestion-related G-costs. Note that 

congestion overlaps with foreign traces but does not overlap with the 

centerlines of such traces. By calculating the appropriate locations for 

depositing congestion, Acorn can converge to routing that is free of 

design-rule violations. 

 
 

 
Figure 7: Opaque tiles represent the 18 allowed cell-to-cell transitions from 

the central black tile. From the central black cell, the allowed in-plane 

transitions are 0°, 26.6° [tan-1(½)], 45° [tan-1(1)], 63.4° [tan-1(2)], 90°, etc. 
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To avoid design-rule violations in complex designs, Acorn calculates 

an appropriate distance from each net for depositing congestion, 

including congestion for: 
 

1. Different width and spacing rules for traces, upward-going vias, 

and downward-going vias, 

2. Different width and spacing rules for power/ground nets, signal 

nets, and DP pseudo-nets (described in next section), 

3. Boundaries between different design-rule zones, at which 

linewidths and spacings can change. 
 

As an example of item (1), Acorn deposits trace-related congestion 

nearby a trace, but must deposit via congestion farther away from the 

trace to repel large-diameter vias from being routed near the trace. For 

this reason, Acorn keeps track of three congestion attributes at each cell: 

the amount of congestion, the path that caused it, and the shape-type 

that caused it (trace, upward-, or downward-going via). 

3.3 DP Post-Processing 
ACO, IACO, and NC algorithms are well suited to attract or repel nets 

from each other. However, differential pair nets present unique 

challenges. These nets must route close to one another, but not too close. 

Despite attempts to develop more elegant solutions, it was decided to 

collapse both DP nets into a single ‘pseudo-path,’ which is treated by A* 

in a manner similar to non-DP paths (not unlike [9]).  

Near the end of each iteration, after pseudo-paths have been routed 

along with non-DP paths, Acorn performs four post-processing steps for 

DP nets before checking for design-rule violations. These are listed 

below and illustrated in Figure 9. 
 

1. Create traces on both sides of the pseudo-path, separated by the 

user-defined pitch for the given DP (Figure 9(b)), 

2. Remove portions of the DP traces from step (1) to allow for 

graceful transitions from DP traces to vias (Figure 9(c)). 

3. Create vias for each DP net where the pseudo-path transitions 

between layers (Figure 9(d)), 

4. Connect the DP traces to DP vias using A* pathfinding, which 

respects the deposited congestion from neighboring nets 

(Figure 9(e)). 
 

 

Step 4 is compute-intensive and includes pre-calculations that 

determine which of the two DP traces should connect to each DP via. 

(Unlike the example in Figure 9(e), this decision is not obvious in highly 

symmetric DP routing.) Despite the run-time penalty, careful attention 

to DP traces and vias has enabled faster convergence to violation-free 

solutions. 

3.4 Real-time Algorithm Tuning 
Over the course of many rip-up-and-reroute iterations, the routing 

occasionally converges to a steady state that contains design-rule 

violations. Three strategies are employed to avoid such situations: 
 

1. Exchanging the start- and end-terminals of nets that have 

violations, 

2. Changing the congestion sensitivities for all nets, thereby 

changing the G-cost in the A* pathfinding, and 

3. Rarely, depositing permanent (non-evaporating) congestion in 

regions with persistent design-rule violations. 
 

As a concrete example, Figure 10 shows the aggregate path length as a 

function of Acorn run-time over 857 iterations for a 356-net, 5-layer test 

case. The path length (green) initially increases before converging to a 

relatively stable value. Each blue dot represents one of 139 iterations 

with no design-rule violations. When Acorn detects an unwanted 

plateau in the aggregate length, it selects one of the above three 

strategies to upset the routing configuration. These strategies are 

detailed below. 

 

 
Figure 9: In place of DP nets, A* is used to route wide pseudo-paths (a), 

consisting of pseudo-traces (white) and pseudo-vias (gold). Acorn then 

creates parallel traces along the edges of the pseudo-traces (b) before 

removing segments near pseudo-vias (c). DP vias are created (d), 

consistent with design rules for each layer. Finally, A* routing is used to 

bridge the gaps along the DP nets, depicted by the yellow traces in (e). 

 
 

Figure 8: Traces (red) and their associated congestion (grey). In the 

absence of design-rule violations, no trace’s centerline overlaps with 

another net’s congestion. 



Page 6 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne 

Acorn exchanges the start-/end-terminals to alter the routing when 

multiple routes have equivalent F-costs for the same net. Acorn’s 

implementation of A* deterministically selects one of these lowest-cost 

routes from iteration to iteration. But when start/end-terminals are 

exchanged, Acorn can select a different route with equivalent F-cost. 

Acorn modulates the congestion sensitivity, which is one of the 

factors that constitutes Gcong, to change the cost for nets to cross each 

other’s paths. This sensitivity has no effect on Gdist and therefore has no 

direct effect on nets without design-rule violations. 

Figure 11 provides a conceptual diagram of the aggregate F-cost from 

all nets as a function of the (infinity of) routing configurations. In Figure 

11(a) are three local minima (A, B, C) and a global minimum (D) – the 

latter representing a routing configuration with design-rule violations. 

For zero or small values of the congestion sensitivity (small Gcong), the 

global minimum will always represent a routing configuration with 

design-rule violations, except for trivially simple problems. By 

increasing the congestion sensitivity (Figure 11(b)), Acorn increases the 

cost of configurations that contain design-rule violations without 

affecting violation-free configurations. Eventually, this will cause local 

minimum C, which contains no violations, to become a global minimum 

at which Acorn attempts to converge. 

If the congestion sensitivity is increased too much, however, Acorn 

has been found to converge to configurations that are obviously 

suboptimal. Figure 11(c) is one explanation; the cost-barrier between 

violation-free configurations A and C becomes so large that Acorn 

converges to local minimum A rather than global minimum C. 

No theoretical attempt has been made to predict the optimal 

congestion sensitivity a priori for a given case. Instead, Acorn gradually 

increases the sensitivity early in the run (yellow region in Figure 10) 

before settling on an arbitrary (but deterministic) value. If persistent 

design-rule violations persist after at least 60 iterations, then Acorn 

significantly increases the sensitivity by 41% (by a factor of √2). At the 

end of an additional 60 iterations, Acorn compares the quality of the 

routing at the two sensitivity values. If the higher value resulted in 

equivalent or better routing metrics, the sensitivity is increased again 

by √2x. Such increases continue every 60 iterations until the routing 

metrics begin to degrade, at which point Acorn decreases the sensitivity 

to congestion. This coarse gradient-descent is inspired by simulated 

annealing (SA) algorithms in which the temperature is adjusted to 

modulate the likelihood of overcoming cost barriers. A large congestion 

sensitivity in Acorn (Figure 11(c)) is analogous to a low SA temperature; 

both inhibit transitions between local cost-minima in complex systems. 

Acorn deposits permanent congestion in rare situations at locations 

that persistently exhibit a specific type of design-rule violation. The 

congestion is intended to repel DP pseudo-traces when violations on the 

associated DP traces cannot be resolved through the normal IACO 

process. Such persistent violations can occur when user-defined 

barriers constrain vias to a small region, such as the die-to-package or 

package-to-PCB interface where such vias are constrained in 

rectangular or hexagonal (staggered) arrays. The permanent congestion 

causes the A* pathfinder to add a pseudo-via to a layer that is less 

crowded with DP traces.  

Finally, Acorn introduces a pseudorandom component into the 

routing for all iterations that exhibit design-rule violations. Specifically, 

 
Figure 10: As a function of run-time, the total routing length (green) and number of design-rule violations (red) are plotted. Blue points represent 139 iterations 

with violation-free solutions. Yellow region and dashed lines denote when routing parameters were modified to reduce path costs and design-rule violations. 
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for all nets that contain design-rule violations during an iteration, Acorn 

randomly selects a small number of nets (1-3) to have their congestion 

sensitivities temporarily modified on the subsequent iteration. For 

some nets, the sensitivity will increase by as much as 400%; for others, 

it will reduce by up to 98%. Such temporary, single-iteration changes 

can significantly disrupt the routing, but are believed to enable 

convergence to routing configurations with overall lower costs, while 

avoiding oscillatory routing behavior, similar to [11]. Acorn behaves 

deterministically despite these pseudorandom effects. 

4 Experimental Results 
The Acorn algorithm was developed in the C programming language 

with use of the OpenMP libraries for multithreading and LibPng 

libraries to generate routing layouts for viewing in a web interface.  

More than 300 small regression test cases with 1 to 30 nets were 

created to validate routing and design-rule checking (e.g., Figure 4(b)). 

Larger test cases with 356 nets were created to mimic industry routing 

challenges – especially in the package. Relative to typical industry 

designs, these large test cases have comparable routing areas, design 

rules for linewidths and spacings, and densities of terminals. The 356-

net cases used a grid-size of 20 µm. 

For these large test cases, the software was run on Linux using 16-, 

32-, and 64-threaded Arm-based, compute-optimized, Amazon 

Graviton3 processors from Amazon Web Services with memory equal to 

2 GB per thread. 

4.1 IC Package Routing 
To simulate the routing of a flip-chip package, 365 two-terminal nets 

were arranged in a netlist to route from realistic C4 sites on the top layer 

of the package (near the die) to solder balls in the ball-grid array on the 

bottom layer. The netlist included 24 differential pairs (i.e., 48 DP nets), 

in addition to 15 two-terminal power/ground nets with larger 

linewidths. Depending on the electrical performance requirements, a 

package of this size and wire density could easily require eight metal 

layers, including the bottom layer dedicated largely to solder balls. For 

this test case, only five layers were included because Acorn does not 

route power/ground planes.  
 

Figure 12(a) shows the lowest-cost routing configuration for this 

package, with quadrants of each layer in Figures 12(b)-(f). The lack of 

significant routing in the center of the package and on layers 4 and 5 was 

intentional; these regions were defined as high-cost zones, thereby 

forcing Acorn to avoid routing in these areas. In a real package, such 

zones could be used for power/ground planes. 

The routing metrics for this test case are plotted in Figure 10. Using 

16 threads, Acorn required 13.6 hours to complete 857 iterations, 

including 139 iterations with no design-rule violations. The first 

iteration without such violations was found after only 4.0 hours. 

However, the lowest-cost iteration was found at 10.9 hours. Subsequent 

iterations had comparable (but higher) costs. The aggregate path length 

of this lowest-cost configuration was 4.6% longer than the value derived 

from simply connecting each start- and end-terminal with a straight line. 

The number of vias in the design was the theoretical minimum for the 

net- and layer-counts, largely due to a large value used for DvertCost 

(15,000 µm), which was more than half the lateral size of the entire 

package. This choice made each via costly relative to lateral routing. 

4.2 Package and PCB Routing 
To assess Acorn with simultaneous package and PCB routing, three PCB 

layers were added to the five-layer package described in the previous 

section. A netlist for a fully populated PCB was not available, so this case 

instead investigated PCB escape-routing from the package. Unlike 

typical PCB escape-routing studies, however, BGA sites were not 

assigned to specific nets. Instead, these package-to-PCB solder-balls 

sites were flexible waypoints for nets to negotiate among each other. 

More solder-ball sites were defined than required by the netlist to 

enable traces to negotiate for the limited BGA waypoints. 

Similar to Figure 5(b), all nets’ PCB terminals for this test were 

located in pin-swap zones on the perimeter of the PCB. Acorn therefore 

attempted to find the shortest paths to this perimeter using the fewest 

vias without violating design rules. Like the previous test case, DvertCost 

was 15,000 µm for this run. 

Acorn achieved 146 violation-free routing configurations during 

1320 iterations over the course of 60 hours using 32 threads. Routing 

on the package layers was qualitatively similar to the previous case 

(Figure 12). Figure 13 shows the overall routing and the PCB routing. 
 

 
Figure 13: Lowest-cost routing configuration for a 356-net case using five 

package routing layers and three PCB layers. All eight layers are shown in (a), 

with PCB layers shown in (b)-(d). PCB terminals are located in pin-swap 

zones that extend across all three PCB layers at their perimeter. 

 
Figure 12: Lowest-cost routing configuration for a 356-net package using 

five routing layers. Layer 5 is the BGA layer; faint circles around BGA pairs 

indicate DP nets. 
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4.3 Die, Package, PCB Routing 
Simultaneous die, package, and PCB routing was tested by adding a die-

level RDL layer to the case described in the previous section. 356 

terminals of silicon I/O buffers were assigned to realistic locations on 

the die perimeter. Acorn routed RDL traces with a pitch of 16 µm to C4 

sites, representing the die-to-package electrical interface. More die-to-

package C4 sites were defined than this net-count to enable RDL traces 

to negotiate for the limited C4 waypoints.  

Similar to Figure 5(b), all nets’ PCB terminals for this test were 

located in pin-swap zones on the perimeter of the PCB. Acorn therefore 

attempted to find the shortest paths to this perimeter using the fewest 

vias without violating design rules. DvertCost was 5,000 µm for this run. 

Acorn achieved 139 violation-free routing configurations during 

1850 iterations over the course of 91 hours using 64 threads. Figure 14 

shows the overall routing. For the package and PCB layers, the routing 

was qualitatively similar to the previous cases (Figures 12 and 13). The 

die-level routing is highlighted in the insets of Figure 14. 

 

5 Conclusions 
As a proof-of-concept, the algorithm described herein exhibits potential 

for co-design across the die, package, and PCB domains. It provides 

multiple, viable, routing configurations for industry-like design cases, 

albeit with run-times that extend to hours or even days. The solution 

proposed herein is not expected to provide an optimal solution within 

any given domain; its utility instead is its ability to span multiple 

domains without dependencies on other software tools – proprietary or 

otherwise. 

Acknowledgements 

The author wishes to thank former engineering colleagues at NXP 

Semiconductors for ideas that inspired and shaped the present work. 

 

 

REFERENCES 

 
1 Mahendrasing Patil, Amit Brahme, Michael Shust, Keven Coates, Shubhada Thatte, Sreekanth Soman, Kamal Kumar, "Chip-

package-board co-design for Complex System-on-Chip (SoC)," 19th Topical Meeting on Electrical Performance of Electronic 

Packaging and Systems, 2010, pp. 273-276. 
2 Humair Mandavia, Kazunari Koga, Ralf Brüning, Nikola Kontic, "System I/O Optimization with SoC, SiP, PCB Co-Design," 

2015 European Microelectronics Packaging Conference (EMPC), Friedrichshafen, Germany, 2015, pp. 1-4. 
3 Thomas Brandtner, Klaus Pressel, Natalia Floman, Michael Schultz, Michael Vogl, "Chip/Package/Board Co-Design 

Methodology Applied to Full-Custom Heterogeneous Integration," 2020 IEEE 70th Electronic Components and Technology 

Conference (ECTC), 2020, pp. 1718-1727. 
4 Guy Theraulaz, Eric Bonabeau, “A Brief History of Stigmergy,” Artificial Life. 1999 Spring, 5(2), pp. 97-116. 
5 Larry McMurchie, Carl Ebeling, "PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs," Third 

International ACM Symposium on Field-Programmable Gate Arrays, Napa Valley, CA, USA, 1995, pp. 111-117. 
6 Russell Tessier, "Negotiated A* Routing for FPGAs,” Proceedings of The Fifth Canadian Workshop on Field-Programmable 

Devices, 1998 (FPD98). 
7 Pak K. Chan, Martine D.F. Schlag, "Acceleration of an FPGA Router," in 1997 IEEE Workshop on FPGAs for Custom 

Computing Machines, pp. 175-181, 1997. 
8 Pak K. Chan, Martine D.F. Schlag, "New Parallelization and Convergence Results for NC: A Negotiation-Based FPGA Router," 

FPGA 2000: pp. 165-174. 

 
Figure 14: Lowest-cost routing configuration for a 356-net case using one RDL layer, five package routing layers, and three PCB layers. All nine layers are shown 

at left. Insets show the die-level terminals (green), routing (red) and the die-to-package C4 connections (blue). Some C4 sites were not used for routing (white). 



Page 9 of 9 31 January 2025, https://danboyne.github.io/ACORN/theory/ Copyright 2024-2025 Daniel Boyne 

 
9 Ting-Chou Lin, Devon Merrill, Yen-Yi Wu, Chester Holtz, Chung-Kuan Cheng, "A Unified Printed Circuit Board Routing 

Algorithm with Complicated Constraints and Differential Pairs," ASPDAC '21: Proceedings of the 26th Asia and South Pacific 

Design Automation Conference, January 2021, pp. 170–175. 
10 Jośe Capela Dias, Penousal Machado, Daniel Castro Silva, Pedro Henriques Abreu, "An Inverted Ant Colony Optimization 

Approach to Traffic," Engineering Applications of Artificial Intelligence 00 (2014) pp. 1–20. 
11 Tri-Hai Nguyen, Jason J. Jung, “ACO-based Traffic Routing Method with Automated Negotiation for Connected Vehicles,” 

Complex & Intelligent Systems (2023) 9, pp. 625–636. 
12 Jia-Wei Fang, Kuan-Hsien Ho, Yao-Wen Chang, "Routing for Chip-Package-Board Co-Design Considering Differential 

Pairs," 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 512-517. 
13 Jia-Wei Fang, Yao-Wen Chang, "Area-I/O Flip-Chip Routing for Chip-Package Co-Design," 2008 IEEE/ACM International 

Conference on Computer-Aided Design, San Jose, CA, USA, 2008, pp. 518-522. 
14 Jia-Wei Fang, Martin D. F. Wong, Yao-Wen Chang, "Flip-Chip Routing with Unified Area-I/O Pad Assignments for Package-

Board Co-Design," 2009 46th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 2009, pp. 336-339. 
15 Jia-Wei Fang, Yao-Wen Chang, "Area-I/O Flip-Chip Routing for Chip-Package Co-Design Considering Signal Skews," in 

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 5, May 2010, pp. 711-721. 
16 Jeffrey McDaniel, Daniel Grissom, Philip Brisk, "Multi-terminal PCB Escape Routing for Digital Microfluidic Biochips using 

Negotiated Congestion," 2014 22nd International Conference on Very Large Scale Integration (VLSI-SoC), Playa del Carmen, 

2014, pp. 1-6. 
17 Kenny Daniel, Alex Nash, Sven Koenig, Ariel Felner, "Theta*: Any-Angle Path Planning on Grids," Journal of Artificial 

Intelligence Research 39 (2010), pp. 533-579. 
18 Peter E. Hart, Nils J. Nilsson, Bertram Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," 

in IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, July 1968, pp. 100-107. 


